Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Dilead mercury chromate(VI), $\mathrm{Pb}_{\mathbf{2}} \mathrm{HgCrO}_{6}$

W. Klein, J. Curda, K. Friese and M. Jansen*

Max-Planck Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
Correspondence e-mail: m.jansen@fkf.mpg.de

Received 9 October 2001
Accepted 4 December 2001
Online 23 January 2002
The structure of $\mathrm{Pb}_{2} \mathrm{HgCrO}_{6}$ (space group $P \overline{1}$) can be described as consisting of isolated $\left[\mathrm{CrO}_{4}\right]^{2-}$ tetrahedra and nearly linear $\left[\mathrm{HgO}_{2}\right]^{2-}$ dumb-bells, which form layers of composition $\left[\mathrm{HgCrO}_{6}\right]^{4-}$. These are intercalated with corrugated pseudo-hexagonal Pb^{2+} layers. The Pb^{2+} cation is stereochemically active and has coordination $3+5$.

Comment

$\mathrm{Pb}_{2} \mathrm{HgCrO}_{6}$ was first obtained as a by-product of different syntheses aiming to produce ternary silver oxides in steel autoclaves with perchloric acid as an accelerator (Curda et al., 2001). Subsequently, single crystals of $\mathrm{Pb}_{2} \mathrm{HgCrO}_{6}$ have been prepared by solid-state reaction of a mixture of $\mathrm{HgO}, \mathrm{PbO}_{2}$ and elemental Cr under an elevated oxygen pressure.

The structure of $\mathrm{Pb}_{2} \mathrm{HgCrO}_{6}$ can be described as consisting of three basic building units: isolated $\left[\mathrm{CrO}_{4}\right]^{2-}$ tetrahedra and nearly linear $\left[\mathrm{HgO}_{2}\right]^{2-}$ dumb-bells form layers of composition

Figure 1
A projection on to $a b$ of the structure of $\mathrm{Pb}_{2} \mathrm{HgCrO}_{6}$. The $\left[\mathrm{CrO}_{4}\right]^{2-}$ tetrahedra are shown.

Figure 2
Views of the two environments of the Pb^{2+} cations in $\mathrm{Pb}_{2} \mathrm{HgCrO}_{6}$. Symmetry codes are as given in Table 1.
$\left[\mathrm{HgCrO}_{6}\right]^{4-}$, which are intercalated with corrugated pseudohexagonal Pb^{2+} layers perpendicular to the [110] direction (Fig. 1).

The Pb^{2+} cation is stereochemically active. Every Pb^{2+} cation has a first coordination sphere formed by three O atoms at distances ranging from 2.24 to $2.45 \AA$. The second coordination sphere is formed by five further O atoms at distances of 2.64-3.66 \AA (Table 1 and Fig. 2).

Bond-valence sums for the cations, calculated according to Brese \& O'Keeffe (1991), are 6.16 for $\mathrm{Cr}, 1.98$ for Hg , and 2.14 and 2.21 for Pb . While for atoms $\mathrm{O} 1, \mathrm{O} 5$ and O 6 , the bondvalence sums are within the normal range ($2.09,2.11$ and 1.96 , respectively), for O2 (2.22), O3 (1.79) and O4 (2.30), higher deviations from the ideal value are observed.

Experimental

To synthesize $\mathrm{Pb}_{2} \mathrm{HgCrO}_{6}$, a mixture of $\mathrm{HgO}, \mathrm{PbO}_{2}$ and elemental Cr (molar ratio 1:2:1), under an elevated oxygen pressure of 11 MPa , was annealed for 120 h at 773 K in silver crucibles placed in stainless steel autoclaves (Linke \& Jansen, 1997) using $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ as an accelerator. Single crystals of $\mathrm{Pb}_{2} \mathrm{HgCrO}_{6}$ were formed.

Crystal data

$\mathrm{Pb}_{2} \mathrm{HgCrO}_{6} \quad Z=2$
$M_{r}=762.98$
Triclinic, $P \overline{1}$
$a=6.505$ (2) \AA
$b=7.201$ (3) \AA
$c=7.605(3) \AA$
$\alpha=91.82$ (3) ${ }^{\circ}$
$\beta=92.17(3)^{\circ}$
$\gamma=111.33(3)^{\circ}$
$V=331.2(2) \AA^{3}$
$D_{x}=7.651 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8070
\quad reflections
$\theta=2.6-24.5^{\circ}$
$\mu=75.35 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prismatic, red
$0.20 \times 0.05 \times 0.02 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer
Image-plate scans
Absorption correction: numerical
(Coppens, 1970)
$T_{\text {min }}=0.011, T_{\text {max }}=0.081$
3475 measured reflections
1838 independent reflections
1583 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.070$
$\theta_{\text {max }}=29.5^{\circ}$
$h=-9 \rightarrow 7$
$k=-9 \rightarrow 9$
$l=-10 \rightarrow 10$
Intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.127$
$S=0.97$
1838 reflections
92 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0857 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=3.68 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-3.30 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \quad \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0073(7)
\end{aligned}
$$

inorganic compounds

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Hg} 1-\mathrm{O} 4$	$1.993(9)$	$\mathrm{Pb} 1-\mathrm{O} 1^{\text {vi }}$	$3.209(12)$
$\mathrm{Hg} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.019(9)$	$\mathrm{Pb} 2-\mathrm{O} 4$	$2.236(9)$
$\mathrm{Hg} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.673(9)$	$\mathrm{Pb} 2-\mathrm{O} 2$	$2.384(10)$
$\mathrm{Hg} 1-\mathrm{O} 6^{\text {ii }}$	$2.749(9)$	$\mathrm{Pb} 2-\mathrm{O} 2^{\text {iv }}$	$2.395(11)$
$\mathrm{Hg} 1-\mathrm{O} 3$	$3.150(9)$	$\mathrm{Pb} 2-\mathrm{O} 1$	$2.642(14)$
$\mathrm{Hg} 1-\mathrm{O} 3^{\text {iii }}$	$3.193(9)$	$\mathrm{Pb} 2-\mathrm{O} 5$	$2.795(14)$
$\mathrm{Hg} 1-\mathrm{O} 1$	$3.459(9)$	$\mathrm{Pb} 2-\mathrm{O} 3^{\text {vii }}$	$3.109(14)$
$\mathrm{Pb} 1-\mathrm{O} 4^{\text {iv }}$	$2.240(11)$	$\mathrm{Pb} 2-\mathrm{O} 3^{\text {viii }}$	$3.215(14)$
$\mathrm{Pb} 1-\mathrm{O} 2$	$2.375(10)$	$\mathrm{Pb} 2-\mathrm{O} 4^{\text {viii }}$	$3.571(14)$
$\mathrm{Pb} 1-\mathrm{O} 5$	$2.448(12)$	$\mathrm{Cr} 1-\mathrm{O} 1$	$1.609(12)$
$\mathrm{Pb} 1-\mathrm{O} 3^{\text {v }}$	$2.765(12)$	$\mathrm{Cr} 1-\mathrm{O} 6$	$1.619(11)$
$\mathrm{Pb} 1-\mathrm{O}^{\text {vi }}$	$2.893(12)$	$\mathrm{Cr} 1-\mathrm{O} 5^{\text {ix }}$	$1.650(13)$
$\mathrm{Pb} 1-\mathrm{O} 6^{\mathrm{v}}$	$2.895(12)$	$\mathrm{Cr} 1-\mathrm{O} 3$	$1.661(12)$
$\mathrm{Pb} 1-\mathrm{O} 5^{\text {vi }}$	$3.080(12)$		
$\mathrm{O} 4-\mathrm{Hg} 1-\mathrm{O} 2^{\mathrm{i}}$	$174.5(4)$	$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O} 6$	$107.5(7)$
$\mathrm{O} 4^{\text {iv }}-\mathrm{Pb} 1-\mathrm{O} 2$	$75.7(4)$	$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O} 5^{\text {ix }}$	$111.0(6)$
$\mathrm{O} 4^{\text {iv }}-\mathrm{Pb} 1-\mathrm{O} 5$	$90.6(4)$	$\mathrm{O} 6-\mathrm{Cr} 1-\mathrm{O} 5^{\text {ix }}$	$112.2(6)$
$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{O} 5$	$78.9(3)$	$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O} 3$	$109.5(7)$
$\mathrm{O} 4-\mathrm{Pb} 2-\mathrm{O} 2$	$93.6(4)$	$\mathrm{O} 6-\mathrm{Cr} 1-\mathrm{O} 3$	$108.5(6)$
$\mathrm{O} 4-\mathrm{Pb} 2-\mathrm{O} 2^{\text {iv }}$	$75.4(4)$	$\mathrm{O} 5^{\text {ix }}-\mathrm{Cr} 1-\mathrm{O} 3$	$108.0(5)$
$\mathrm{O} 2-\mathrm{Pb} 2-\mathrm{O} 2^{\text {iv }}$	$71.5(4)$		

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x, y, 1+z$; (iii) $2-x, 2-y, 1-z$; (iv) $-x, 1-y, 1-z ;$ (v) $x-1, y-1, z$; (vi) $-x, 1-y,-z$; (vii) $x-1, y, z$; (viii) $1-x, 2-y, 1-z$; (ix) $1+x, y, z$.

Refinement was also carried out in space group $P 1$, but did not lead to better agreement factors and was therefore discarded.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-AREA; data reduction: $X-R E D$ (Stoe \& Cie, 2001); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998-2000).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1350). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. \& Spagna, R. (1997). SIR97. University of Bari, Italy.
Brandenburg, K. (1998-2000). DIAMOND. Release 2.1. Crystal Impact GbR, Bonn, Germany.
Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Coppens, P. (1970). In Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.

Curda, J., Peters, E.-M., Klein, W. \& Jansen, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 180.
Linke, C. \& Jansen, M. (1997). Z. Anorg. Allg. Chem. 623, 1441-1446.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2001). X-AREA and X-RED. Stoe \& Cie, Darmstadt, Germany.

